APRIL 8, 2012





[ architectural engineering thesis . mechanical option ]

### AE 482 FINAL PRESENTATION



## by JOSHWENTZ



## thesis

## BAE Architectural Engineering Mechanical Option

**BS Information Sciences & Technology** Integration & Application Option

## by JOSHWENTZ













PROPOSED















ENERGY







PROPOSED



## [ project ]











| L |  |
|---|--|
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |

S DEPTH 1

Phipps Conservatory & Botanical Gardens educates & entertains people with formal gardens & exotic plants

PROJECT

EXISTING

PROPOSED

OFFICE / CLASSROOM / CONFERENCE tor Phipps Employees / University Researchers

24,350 square foot

Dec. 2010 – Apr. 2012

\$20 million Lump Sum with Contractor



S DEPTH 2

A BREADTH

ENERGY

### COSTS

## Schenley Park



|     | <br> | <br>_ |
|-----|------|-------|
| 1   |      |       |
| 1   |      |       |
| 1   |      |       |
| 1   |      |       |
| 1   |      |       |
|     |      |       |
| 1   |      |       |
| 1   |      |       |
| 1   |      |       |
| 1   |      |       |
| ┣━━ | <br> | <br>- |
| 1   |      |       |
| 1   |      |       |
| 1   |      |       |
|     |      |       |
|     |      |       |

Phipps Conservatory & Botanical Gardens educates & entertains people with formal gardens & exotic plants



### EXISTING

PROPOSED



OFFICE/CLASSROOM/CONFERENCE tor Phipps Employees / University Researchers

24,350 square foot

Dec. 2010 – Apr. 2012

\$20 million Lump Sum with Contractor



SPTH 2

▲ BREADTH

ENERGY

### COSTS

## Phipps Conservatory



| 1 |  |
|---|--|
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |

Phipps Conservatory & Botanical Gardens educates & entertains people with formal gardens & exotic plants





PROPOSED



OFFICE / CLASSROOM / CONFERENCE tor Phipps Employees / University Researchers

24,350 square foot

Dec. 2010 – Apr. 2012

\$20 million Lump Sum with Contractor



S DEPTH 2

A BREADTH

ENERGY

### COSTS





S DEPTH 1

Phipps Conservatory & Botanical Gardens educates & entertains people with formal gardens & exotic plants

OFFICE/CLASSROOM/CONFERENCE tor Phipps Employees / University Researchers

24,350 square foot

Dec. 2010 – Apr. 2012

\$20 million Lump Sum with Contractor



S DEPTH 2

▲ BREADTH

ENERGY

### COSTS





PROPOSED



## team

SPTH 2

A BREADTH

ENERGY

## CONSTRUCTION MANAGER

## Turner Construction



PROPOSED



## [ existing ]





ENERGY



GTS

S DEPTH 1

## GEOTHERMAL FULL GROUND SOURCE

510'

## X 14

### driveway

- Ground Source Heat Exchanger at 55 F
- 2 pumps at 2 HP, 1750 RPM ... in mechanical room

EXISTING

water side

PROPOSED

Small mechanical room

PROJECT

## mechanical systems

## ENERGY RECOVERY UNIT





- Decreases duct runs
- Perimeter diffusers

2 MODES: Energy Recovery Ventilator & DOAS 12,400 cfm Enthalpy Wheel Economizer Mode

## air side

S DEPTH 2

BREADTH

ENERGY

## UNDERFLOOR AIR DISTRIBUTION

- open offices, classrooms

Convective heat created from people, computers





desiccant dehumidification



demand controlled ventilation



minimally conditioned atrium







passive solar design





natural ventilation

PROJECT

S DEPTH 1

PROPOSED

EXISTING

## sustainability

## [1] LEED Platinum

[2] Living Building Challenge

[3] SITES Certification for Landscapes

10+ Consultants 32/32 LEED pts for mechanical systems









rainwater harvesting

S DEPTH 2

▲ BREADTH

ENERGY



## solar photovoltaics



## wind turbine

## constructed wetland



lagoon system



|    | CRITERIA                    | GRADE |          |
|----|-----------------------------|-------|----------|
|    | Space                       | А     |          |
|    | Comfort                     | B     |          |
|    | Health & Indoor Air Quality | A     |          |
|    | Controls & Maintainability  | D     |          |
|    | Energy                      | A     |          |
|    | Costs                       | С     |          |
|    | Sustainability              | A     |          |
|    |                             |       |          |
| PR | DJECT EXISTING              |       | PROPOSED |

## evaluation

### Energy Baseline Comparisions

ormation Administration Baseline 💷 Center for Sustainable Landscapes





SPTH 2

A BREADTH

ENERGY

## 4.3%

building costs due to mechanical systems

COSTS



PROPOSED



## [ proposed ]





ENERGY



## depths

### MECHANICAL

1



## Green Roof Spray Cooled Roof



Cooling Tower Plate Heat Exchanger Tower Pump

PROJECT

2

## Full Geothermal Hybrid Geothermal





EXISTING

PROPOSED





A BREADTH

ENERGY

### COSTS

## DECREASE Initial Costs

## Similar Energy Performance

Bore Ho

1





## breadths

## CONSTRUCTION Bore Hole Optimization

## 2

## ELECTRICAL Direct Current Distribution





PROPOSED



Use water as an ecologically sound cooling agent

## [ depth 1 ] spray cooled roof





ENERGY



## green roof

3216 sqft

PROJECT



PROPOSED

48% total

EXISTING

## insulation

## spray cooled roof





S DEPTH 2

S DEPTH 1

A BREADTH

ENERGY

## 85% total



## vendor

## SPRINKOOL SYSTEM INTERNATIONAL



**Evaporative Heat** Transfer Coeff = 5.678 W/m2

WATER SURFACE



 $q_{solar} = q_{evqp} + q_{rad}$  $+q_{conv} + q_{cond}$ 

S DEPTH 1

PROJECT

EXISTING

PROPOSED

## modeling



## $q_{cond(water)} = q_{cond(roof)} q_{cond(roof)} = q_{rad(inside)}$ $+ q_{conv(inside)}$

## ASHRAE CLTD

- q = UA (CLTD) correctedU = 0.023BTU/hr\*ft2FA = 5645.5 SF CLTD ADJUSTED FOR latitude-month, exterior surface color, indoor & outdoor design temp, solar radiation, insulation
- **1.** Hourly Temperature Variation
  - Design Month = AUG, 10 Hour Avg = 81.55 F
- 2. Hourly Cooling Load Temperature Differential
  - CLTD(c) = [(CLTD(unc)) + LM) \* K + (78 F Tr) + (To 85 F)] \*f
- Monthly Cooling Load Temperature Differential 3.
  - Used for Usage Reduction in Energy Analysis
- 4. Peak Monthly Cooling Load Temperature Differential

S DEPTH 2

▲ BREADTH

ENERGY

|                                     | 1.     | H   | ОU            | Irly     | γI         | er       | m        | be        | ra       | tu       | re       | Va       | ria    | tioi           | n       |         |      |       |                                    | I:           | ~        |        |      |      |               | <b>. .</b> |      | :        |
|-------------------------------------|--------|-----|---------------|----------|------------|----------|----------|-----------|----------|----------|----------|----------|--------|----------------|---------|---------|------|-------|------------------------------------|--------------|----------|--------|------|------|---------------|------------|------|----------|
| Solar Time [hrs]                    | 1-9    | 9   | 1(            | 0 1      | .1 1       | 12       | 13       | 14        | 15       | 16       | 17       | 18 19    | 9-24   | 10 hr.<br>Avg. | 10 hr   | r. Ava. | 1.   | 3. IV | ionthiy C                          | ooiin        | дĽ       | -0c    |      | em   | bera          | atur       | eυ   | ittere   |
| Daily Range Ratio                   | 0      | 0.7 | 7 0.          | 6 o      | .4 0       | ).2      | 0.1      | 0         | 0        | 0        | 0.1 (    | 0.2      | 0      |                |         |         |      |       |                                    |              |          |        |      |      |               |            |      | MO.      |
| Dry Bulb [F]                        | 0      | 87  | 8             | 7 8      | 87 8       | 87       | 87       | 87        | 87       | 87       | 87       | 87       | 0      |                | Daily   | Kange   | ge 🛛 |       | MONTH                              | Α            | PR       | MAY    | JUNE | JULY | AUG           | SEPT       | ОСТ  | AVG.     |
| Daily Range<br>To=Dry Bulb -        | 0<br>0 | 23  | 2             | 32<br>47 | 3 2<br>8 8 | 23<br>82 | 23<br>84 | 23<br>86  | 23<br>87 | 23<br>86 | 23<br>85 | 23<br>82 | 0<br>0 | 81.55          | ,<br>81 | .6 F    |      |       | CLTD (uncorrecte<br>10 hr. average | <b>d)</b> 6: | 2.3      | 62.3   | 62.3 | 62.3 | 62.3          | 62.3       | 62.3 |          |
|                                     |        |     |               |          | $\sim$     |          |          | J —       |          |          |          |          |        |                | ffaran  | +ial    |      |       | LM (Latitude/Mor<br>correction)    | th           | 3        | 1      | 2    | 1    | -3            | -8         | -14  |          |
|                                     | y۷     | _0  | OI            |          | gι         | _0       | d        |           | er       | Πŀ       | ber      | dll      | Jre    |                | neren   | lldl    |      |       | CLTD & LM                          | Ľ            | 9        | 63     | 64   | 63   | 59            | 54         | 48   |          |
| Solar Time [hrs]                    | 1-8    | 9   | 10 1          | 1 12     | 13         | 14 1     | .5 16    | 17        | 18 :     | 19-24    | 10 hr    |          |        |                |         |         |      |       | K = 1                              |              | 1        | 1      | 1    | 1    | 1             | 1          | 1    |          |
| CLTD                                |        |     |               |          |            |          |          |           |          |          | Avg.     |          |        |                |         |         |      |       | (CLTD & LM)K                       | 5            | 9        | 63     | 64   | 63   | 59            | 54         | 48   |          |
| (uncorrected)<br>@1400 hours        | 0      | 34  | 49 6          | 1 71     | 78         | 79 7     | 7 70     | 59        | 45       | 0        | 62.3     | _        |        |                |         |         |      |       | 78 F - Tr<br>Tr = 78 F             |              | D        | 0      | 0    | 0    | 0             | 0          | 0    |          |
| (Latitude/Month<br>correction) JUNE | 0      | 2   | 2             | 2 2      | 2          | 2        | 2 2      | 2         | 2        | 0        |          | _ /      | 1      | ro h           | r. Avg. |         |      |       | To - 85                            | -            | 3        | -3     | -3   | -3   | -3            | -3         | -3   |          |
| CLTD & LM                           | 0      | 36  | 51 6          | 3 73     | 80         | 81 7     | 9 72     | 61        | 47       | 0        |          | _/_      |        |                |         |         |      |       | f = 1                              |              | 1        | 1      | 1    | 1    | 1             | 1          | 1    |          |
| (CLTD & LM)K                        | 0      | 36  | 51 6          | 3 73     | 80         | 81 7     | 9 72     | 61        | 47       | 0        |          |          |        | CL             | ID(C)   |         |      |       | I = I                              | r            |          | -<br>- |      | -    | -             | 16         |      | 50       |
| 78 F - Tr<br>Tr = 78 F              | о      | 0   | 0 0           | 0 0      | 0          | 0 0      | 0 0      | 0         | 0        | 0        | /        |          |        | 61             | ι.ȝ F   |         |      |       |                                    |              |          | 54     | 55   | - 54 | 50            | 40         | 4-   | <u> </u> |
| To - 85<br>To = 81.55 F             | 0      | -3  | -3 -          | 3 -3     | -3         | -3 -     | 3 -3     | -3        | -3       | 0        |          |          |        |                |         |         |      |       |                                    | Mc           | <b>A</b> | vg.    | CLT  | D (c | :) <u>5</u> 0 | F          |      |          |
| f=1                                 | 0      | 1   | 1 $(0)$ $(0)$ | 1 1      | 1          | 1 1      | 1 1      | 1         | 1        | 0        | 64.5     | -        |        |                |         |         |      |       |                                    |              |          |        |      |      |               |            |      |          |
| CLID (corrected)                    | 0      | 33  | 48 6          | 0 70     | 77         | 78 7     | 69 0     | <u>58</u> | 44       | 0        | 61.3     |          |        |                |         |         |      |       |                                    |              |          |        |      |      |               |            |      |          |

S DEPTH 1

PROJECT

EXISTING

PROPOSED

## modeling

## ential

## 4. Peak Monthly Cooling Load Temperature Differential

| MONTH          | JAN | FEB | MAR | APR | MAY | JUNE | JULY | AUG      | SEPT | ОСТ | NOV | DEC | MO.<br>AVG. |
|----------------|-----|-----|-----|-----|-----|------|------|----------|------|-----|-----|-----|-------------|
| CLTD           |     |     |     |     |     |      |      |          |      |     |     |     |             |
| (uncorrected)  |     |     |     | 79  | 79  | 79   | 79   | 79       | 79   | 79  |     |     |             |
| 10 hr. average |     |     |     |     |     |      |      |          |      |     |     |     |             |
| LM             |     |     |     |     |     |      |      |          |      |     |     |     |             |
| (Latitude/Mo   | -10 | -1/ | -8  | -2  | 1   | 2    | 1    | -2       | -8   | -1/ | -10 | -21 |             |
| nth            | -19 | -14 | -0  | -3  | T   | 2    | -    | -3       | -0   | -14 | -19 | -21 |             |
| correction)    |     |     |     |     |     |      |      |          |      |     |     |     |             |
| CLTD & LM      |     |     |     | 76  | 80  | 81   | 80   | 76       | 71   | 65  |     |     |             |
| K = 1          |     |     |     | 1   | 1   | 1    | 1    | 1        | 1    | 1   |     |     |             |
| (CLTD & LM)K   |     |     |     | 76  | 80  | 81   | 80   | 76       | 71   | 65  |     |     |             |
| 78 F - Tr      |     |     |     |     |     |      | _    | <u> </u> | _    | _   |     |     |             |
| Tr = 78 F      |     |     |     | 0   | 0   | 0    | 0    | 0        | 0    | 0   |     |     |             |
| То - 85        |     |     |     | _   | -   | -    | _    | -        | _    | _   |     |     |             |
| To = 81.55 F   |     |     |     | -3  | -3  | -3   | -3   | -3       | -3   | -3  |     |     |             |
| f = 1          |     |     |     | 1   | 1   | 1    | 1    | 1        | 1    | 1   |     |     |             |
| CLTD           |     |     |     | 66  | 60  | 70   | C    | 66       | 61   | -6  |     |     | 6-          |
| (corrected)    |     |     |     | 00  | bу  | /0   | og   | 00       | 10   | 50  |     |     | 50          |

**GREEN ROOF CALCULATOR** by Portland State University, added to EnergyPlus

S DEPTH 2

A BREADTH

ENERGY

COSTS

## Mo. Avg. CLTD (c) 65 F

## schematic



## layout

# based on room temp sensors

| MONTH                      | APR | ΜΑΥ        |
|----------------------------|-----|------------|
|                            |     |            |
| Hrs./Day (Pittsburgh, PA)  |     |            |
| Solar Radiation BTU / sqft |     |            |
| per day                    |     |            |
| Gal / sqft per day         |     |            |
| Gal / sqft per hour        |     |            |
| Usage days per month       |     | 105        |
| Usage hours per day        |     |            |
| Gal / sqft per month       |     | <b>•</b> • |
| H20 gal / month            |     | \$1        |
| H20 \$ / 1000 gal          |     |            |
| H20 \$ / month             |     |            |

ENERGY

COSTS

## waterusage

SHORT misting time QUICK frequency rate







PROPOSED



Reduce cost of ground loop length by adding an auxiliary heat rejecter

## [ depth 2 ] hybrid geothermal





ENERGY



site





| REDUCTION | LOAD COVERAGE BY<br>GROUD LOOP HEAT<br>EXCHANGER | RESULTING COOLING<br>TOWER SIZE |
|-----------|--------------------------------------------------|---------------------------------|
| 0%        | 605,800 BTU/hr                                   | o tons                          |
| 10%       | 545,400 BTU/hr                                   | 5 tons                          |
| 20%       | 485,800 BTU/hr                                   | 10 tons                         |
| 30%       | 425,880 BTU/hr                                   | 15 tons                         |
|           |                                                  |                                 |

| REDUCTION | LOAD COVERAGE BY<br>GROUD LOOP HEAT<br>EXCHANGER | RESULTING COOLING<br>TOWER SIZE |
|-----------|--------------------------------------------------|---------------------------------|
| 0%        | 605,800 BTU/hr                                   | o tons                          |
| 10%       | 545,400 BTU/hr                                   | 5 tons                          |
| 20%       | 485,800 BTU/hr                                   | 10 tons                         |
| 30%       | 425,880 BTU/hr                                   | 15 tons                         |
| • DEPTH 1 | SPTH 2                                           | A BREADTH                       |

| < 225     | brown shale & clay, red shale, dark gray shale, red & gray shale |  |
|-----------|------------------------------------------------------------------|--|
| 225 – 325 | gray sand shale                                                  |  |
| > 325     | sand rock                                                        |  |
|           |                                                                  |  |

PROPOSED

EXISTING

### PROJECT

## downsizing

## 87°F 9°F 75°F

| NG COIL PEAK | HEATING COIL PEAK |
|--------------|-------------------|
| ,88o BTU/hr  | 397,007 BTU/hr    |

\*

## **1.** Select Maximum Wet Bulb Temperature

Twb for Pittsburgh is 73 F 

## 2. Set Cooling Range

T entering — T leaving = <u>95</u> F — 85 F = 10 F

## 3. Set Approach Temperature

T water exit – T wb air = 85 F – 73 F = 12 F •

## 4. Adjust Fluid Flow

 $\dot{m}_{H20} = \frac{1}{Cp * \Delta T_{cooling}}$  range

5. Choose Cooling Tower **Selection Factor** 

S DEPTH 2

ENERGY

## cooling tower



induced draft counterflow tower with flow



## boreholes

| L <sub>c</sub> = _ | $q_a \cdot R_{ga} + [q_{lc} - 3.142]$ | $ \cdot W_{c} ] \cdot [R_{p} + PLF_{m} \cdot \frac{t_{wi} - t_{wo}}{2} ] - t_{p} $ | R <sub>gm</sub> + R <sub>gd</sub> · | F <sub>sc</sub> ] |
|--------------------|---------------------------------------|------------------------------------------------------------------------------------|-------------------------------------|-------------------|
|                    | Building Area                         | 24,350                                                                             | SF                                  |                   |
|                    | Ground Loop Load                      | 50.49, 45.49, 40.49, 35.49                                                         | ton                                 |                   |
|                    | Outdoor Design Temp                   | 87                                                                                 | F                                   |                   |
|                    | Indoor Design Temp                    | 75                                                                                 |                                     |                   |
|                    | Balance Temp                          | 65                                                                                 |                                     |                   |
|                    | Total Heat Pump Capacity              | 109.8                                                                              | ton                                 |                   |
|                    | COP cooling                           | 6.24                                                                               |                                     |                   |
|                    | Pipe Resistance                       | 0.048                                                                              | hr-ft-F/BTU                         |                   |
|                    | Soil Resistance                       | 0.25                                                                               |                                     |                   |
|                    | Mean Water Temp                       | 70                                                                                 | F                                   |                   |
|                    | Mean Earth Temp                       | 55                                                                                 |                                     |                   |

ROOF

MECHANICAL ROOM

GROUND

PROPOSED

GROUND

S DEPTH 1

INPUTS

LENGTH COOLING

## UTS NO

## Ground Loop Sizing Spreadsheet Program based on ASHRAE

| Load Coverage by Cooling<br>Tower         | 0%   | 10%  | 20%  | 30%  |
|-------------------------------------------|------|------|------|------|
| Ground Loop Heat<br>Exchanger Length [ft] | 6885 | 5377 | 4055 | 2919 |

EXISTING

### PROJECT

## schematic



## controls

### 5 TON



| Activate      |  |
|---------------|--|
| Cooling Tower |  |
| if T entering |  |

--

ENERGY

> 62.8 F

### $\dot{q} = \dot{m} * C_p * \Delta T$ Specific Heat (Cp) = 0.917 BTU/lbm-F for 20% ethylene 3 gpm/ton assumed

### 15 TON

> 61.0 F

### 10 TON > 61.9

## cooling tower selection

## DRILL + SPACE + COST + ENERGY

|                        | 0%        | 20% DEC  | SAVINGS  |
|------------------------|-----------|----------|----------|
|                        |           | (10 ton) |          |
| Borehole Length [ft]   | 6885      | 4055     | 2830 ft  |
| # Boreholes            | 14        | 13       | 1 less   |
| Borehole Depth [ft]    | 500       | 320      | 180 ft   |
| Temperature Entering   | 62.7      | 61.0     |          |
| Ground Loop [F]        | 03./      | 61.9     |          |
| Annual Cooling Tower   |           | -6 -     |          |
| Consumption [kWh]      | -         | 50.5     |          |
| Days of Installation   | 30        | 14       | 16 days  |
| Initial Cost [\$]      | \$100,000 | \$53,402 | \$46,598 |
| Space Needed [sqft]    | 3270      | 3010     | 260 sqft |
| \$ / Square Foot Bores | \$30.50   | \$17.74  | \$12.76  |
| \$ / Foot Length       | \$14.52   | \$13.10  | \$1.42   |



### PROJECT

### EXISTING

### PROPOSED

## piping & pumps

## structural



COSTS

<<

Optimizing boreholes for most economical installation

PROJECT

EXISTING

PROPOSED



## [breadth] construction





ENERGY









PROPOSED



## borefield site layout

## SITE LAYOUT

SPTH 2

A BREADTH

ENERGY





S DEPTH 1



### EXISTING

PROPOSED

## borefield site layout

## SITE TERRAIN & EXISTING BOREHOLES

SPTH 2

A BREADTH

ENERGY

|             | LENGTH                            | DEPTH                                                                                                                                                                  |   | # BORE HOLES | AREA              | TIME                                                                                                                                            |   | COST                                                                                                          |
|-------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|---|---------------------------------------------------------------------------------------------------------------|
| AFFECTED BY | Varying Ground Loop<br>Capacities | <i>DRILL RIG</i><br><u>D &lt; 225</u><br>\$1737/day, 500 ft/day<br><u>225 &lt; D &lt; 325</u><br>\$2115/day, 333 ft/day<br><u>D &gt; 325</u><br>\$2417/day, 250 ft/day |   | Æ            | Æ                 | <i>LENGTH,</i><br><i>DRILLING OUTPUT</i><br><u>Grouting</u><br>\$0.25/ft<br><u>Piping</u><br>\$0.59/ft<br><u>Welding</u><br>\$25/weld, \$55/day |   | <i>DEPTH</i><br><u>Labor</u><br>\$70hrs/day*8hrs/day*2people<br><u>CoolingTower</u><br>\$1185, \$1562, \$1856 |
| RANGES      | 6885, 5377,<br>4055, 2919 ft      | 140 – 500 ft                                                                                                                                                           |   | 6 – 49       | 1,387 – 11,680 SF |                                                                                                                                                 |   |                                                                                                               |
| оитритя     |                                   |                                                                                                                                                                        |   |              |                   | 8 – 30 days                                                                                                                                     |   | \$28,541 - \$119,194                                                                                          |
|             | PROJECT EXIS                      | TING PROPOSEI                                                                                                                                                          | ) | S DEPTH 1    | SPTH 2            | A BREADTH                                                                                                                                       | E | ENERGY COS                                                                                                    |

## borehole optimization







## POSSIBLE 19,000 sqft

## DRIVEWAY 4,000 sqft

PROJECT

EXISTING

PROPOSED



## borefield site layout

## TOTAL MAX BOREHOLES

SPTH 2

A BREADTH

ENERGY

## POSSIBLE 80 bores

## DRIVEWAY 30 bores





## borehole optimization



2919 ft, 15 ton



ENERGY

COSTS



Spectral 🕏



## HYBRID GEOTHERMAL FIELD SELECTION

PROJECT

EXISTING

PROPOSED

## borefield site layout

SPTH 2

A BREADTH

ENERGY





## 13 wells

## 320 ft depth



## 16 DAYS Saved

## Not on Critical Path

PROJECT

EXISTING

PROPOSED



## borefield site layout



## GEOTHERMAL PIPING

SPTH 2

A BREADTH

ENERGY

| AL     | \$53,401.86 |           |  |
|--------|-------------|-----------|--|
| gTower | \$          | 1,561.71  |  |
|        | \$          | 15,625.39 |  |
| ng     | \$          | 1,013.75  |  |
|        | \$          | 5,694.14  |  |
| g      | \$          | 29,506.87 |  |





PROPOSED



## [ energy ]





ENERGY



## spray cooled roof







| Elect | ric |
|-------|-----|
| Total | В   |
| Total | S   |



### EXISTING

PROPOSED



## hybrid geothermal

## **ELECTRICAL CONSUMPTION**

SUBSYSTEM

### CONCLUSION

## POLLUTION

Receptacles 23.3%

Heating, 3.4%

Cooling 11.3%

Pumps & Equipment 22.9%



PROPOSED



## [ costs ]





ENERGY



## initial



## operating

## MONTHLY UTILITY COSTS

▲ BREADTH

- SPRAY COOLED 14.6 years
- [10 min. maintenance/ year]

green roof economically infeasible [\$2/sqft/year]

ENERGY

## payback

- HYBRID GEOTHERMAL
- #Years for additional energy cost to equal difference saved in up-front costs
  - = 120
  - [years before hybrid not worth it]

### PROJECT

EXISTING

PROPOSED



Redesign DECREASES Initial Costs & MAINTAINS Similar Energy

## [ conclusion ]

S DEPTH 2



ENERGY





## - \$179,286 in initial cost



### PROJECT

### EXISTING

### PROPOSED

### S DEPTH 1

## recommendations

energy, costs, aesthetics

## **DEFINITE ADDITIONS**

Hybrid Geothermal

## **POSSIBLE ADDITIONS**

Spray Cooled Roof for Phipps Owner & goals, +\$132,000 seems worth it for added aesthetics & occupiable space on roof





## + 3% in annual utility costs

S DEPTH 2

A BREADTH

ENERGY



**3**8

## ACKNOWLEGEMENTS

Family: Mom, Dad, Sister, Gram, Dedicated to Pap (APR11) Turner Construction

- Megan Corrie
- Kristine Retetagos
- Karen Sweeney
- Penn State University
- Prof. Kevin Parfitt
- Prof. Robert Holland
- Advisor: Dr. Bahnfleth
- Dr. Srebric
- AE Students from the Class of 2012

- CJL Engineering
- Craig Duda

- Dr. Treado
- Prof. Ling
- Kaylee Damico
- McClure Company

ASHRAE, Handbook of Fundamentals, HVAC Applications http://www.engr.psu.edu/ae/cic/bimex/index.aspo http://www.duquesnelight.com/customerservices/CustomerGeneration/FrequentlyAsk edQuestions.cfm

> www.eia.gov/state/state-energy-profiles-data.cfm?sid=PA#Prices http://www.nrel.gov/rredc/pvwatts/

## [ credits ]

http://phipps.conservatory.org/project-green-heart/green-heart-at-phipps/center-forsustainable-landscapes.aspx http://www.flickr.com/photos/phippsconservatory/?saved=1 http://www.turnerconstruction.com/experience/project/EE5/phipps-conservatorycenter-for-sustainable-landscapes

## OUTSIDE RESOURCES

## **IMAGES**

APRIL 8, 2012

## thank you







[ architectural engineering thesis . mechanical option ]

### AE 482 FINAL PRESENTATION





## questions?

## by JOSHWENTZ

### APRIL 8, 2012





















### AE 482 FINAL PRESENTATION







# **BARENTER**

## center for sustainable landscapes

[ architectural engineering thesis . mechanical option ]









## by JOSHWENTZ

| Table 45 Green Roof Initial Costs                      |           |
|--------------------------------------------------------|-----------|
| ITEM                                                   | COST      |
| Flashing FlexFlash F                                   | 1878      |
| Flashing FlexFlash UN reinforcing                      | 7321      |
| Gardendrain GR30                                       | 10476     |
| Hydrodrain 300 Panels                                  | 2337      |
| Hydroflex 30                                           | 3559      |
| Lite Top Soil                                          | 8956      |
| Lite Top Aggregate                                     | 883       |
| Lite Top Growing Media / Manufactured Growing<br>Media | 8956      |
| Metal Edge Restraint Soil Retainer                     | 9334      |
| Root Stop Root Barrier                                 | 8860      |
| Surface Conditioner for Vegetated Roof                 | 449       |
| Walkway Pavers & Adjustable Pedestal                   | 34011     |
| Holover Pavers                                         | 24300     |
| Monolithic Membrane                                    | 6919      |
| Adhesives Sealant                                      | 5632      |
| System Filter                                          | 2568      |
| Aluminum Flat Sheets                                   | 5000      |
| TOTAL                                                  | \$141,439 |

| Table 46 Spray Cooling System Installation Costs  |                                       |                                                             |            |  |
|---------------------------------------------------|---------------------------------------|-------------------------------------------------------------|------------|--|
| ITEM                                              | COST                                  | CSL SPECIFICS                                               | COSTS      |  |
| Sprikool Roof Spray System<br>(Piping & Controls) | \$1.55/ <u>sqft</u>                   | Installed onto 85% of the Roof (5645.5<br>SF)               | \$8,750.53 |  |
| Above-Grade Storage Tank                          | \$1500 per 1000<br>gallons            | Unground Water Basin Already Exists                         | o          |  |
| Connecting Pipe                                   | \$16 per lineal foot<br>drain to coil | Connecting Pipe to Roof Already<br>Exists due to Green Roof | 0          |  |

Green Roof: \$1.25 - \$2.00 / ft 2 (only for the first two years)

Spray Cooled: winter: drain, blow down | spring: startup 10 minutes / year



EXISTING

PROPOSED



## initial costs

## MAINTENANCE

| Table 49 Spray Cooled Roof Payback Analysis |                          |
|---------------------------------------------|--------------------------|
| Cost of Implementation                      |                          |
| Initial Cost of Sprinkool Roof Spray System | \$8,750.53 (\$1.55/sqft) |
| Operating Cost Per Season                   |                          |
| Water Usage Annually                        | \$105.92                 |
| Net Savings per Season                      |                          |
| Annual Savings                              | \$702.54                 |
| Less Annual Costs                           | \$105.92                 |
| Net Annual Savings                          | \$596.62                 |
| Payback                                     | •                        |
| Cost of Implementation / Net Savings per    | 14.6 seasons             |
| Season                                      |                          |

### Hybrid Geothermal

Compared to the full geothermal system, the hybrid geothermal costs \$46,598.14 less in up-front costs. The energy simulation shows that the addition of the 10 ton cooling tower in this hybrid geothermal system (which would only operate only in June, July, August, and September) would only cost \$362.97 more per year. Thus, it would take approximately 120 years for the additional energy costs of the hybrid geothermal system to equal the difference saved in up-front costs. This amount of time seems larger than expected. This may be due to an energy model simulation issue that was a result of how Trane TRACE models cooling tower.

### BREADTH

### ENERGY

## payback



| EXISTING: Green Roof                    | CRITERIA   | REDESIGN: Spray Cooled                   |
|-----------------------------------------|------------|------------------------------------------|
| В                                       | Energy     | Α                                        |
| For providing nominal energy savings    |            | For saving a total of 4540 kWh           |
| throughout the summer, yet adding an    |            | throughout the summer months by          |
| additional layer of insulation in the   |            | maximizing cooling coverage to 85%       |
| winter.                                 |            | of the roof.                             |
| D                                       | Cost       | A                                        |
| For costing \$114, 439 for the complete |            | For only costing \$8,750 to install, 94% |
| green roof system.                      |            | less than the green roof.                |
| A                                       | Aesthetics | С                                        |
| For creating a pleasant roof space for  |            | For having a piping array in place of a  |
| occupants to enjoy                      |            | green space                              |



PROPOSED

EXISTING

PROJECT



| EXISTING: Full Geothermal                | CRITERIA | REDESIGN: Hybrid Geothermal           |
|------------------------------------------|----------|---------------------------------------|
| A                                        | Energy   | В                                     |
| For only consuming \$14, 218 per year in |          | For causing an increase of only a few |
| electricity                              |          | hundred dollars more annually         |
| D                                        | Cost     | A                                     |
| For costing \$100,000 in installation    |          | For reducing initial costs by nearly  |
| fees                                     |          | \$47,000                              |

SPTH 2

### 🔍 BREADTH

ENERGY





- where:

  - m = fluid flow [gpm]

  - $\circ \Delta T = T \text{ in} T \text{ out of the ground loop heat exchanger}$
- Example Calculation at Full Load:
  - 55)



PROPOSED

### EXISTING

### PROJECT

## controls

 $\dot{q} = \dot{m} * C_p * \Delta T$ 

o q = downsized ground loop capacity corresponding to the cooling tower coverage [BTU/hr]

- 3 gpm/ton assumed based on ASHRAE recommendation
- max cooling load for CSL = 50.49 ton (calculated via Trane TRACE)
- o Cp = specific heat for 20% ethylene glycol solution [0.917 BTU/lbm-F] (using this solution in the
  - pipes is recommended by ASHRAE due to its lower freezing temperature)
  - Tout during cooling months assumed to be 55 F based on the ground temperature and
    - required temperature needed by the heat pump
- o 605880 BTU/hr = (3 gpm/ton \* 50.49 ton \* 60 min/hr \* 8.33lbm/gal) \* 0.917 BTU/lbm-F \*(Tin —

• Tin = 63.7 F for existing full geothermal system (this is the temperature that the entering water temperature must be in order for it to exit at 55 F)

### S DEPTH 2

### BREADTH

### ENERGY





| Table 14 Green Roof Energy Calculator Inputs |                                    |  |
|----------------------------------------------|------------------------------------|--|
| State                                        | Pennsylvania                       |  |
| City                                         | Pittsburgh                         |  |
| Туре                                         | New Office Building                |  |
| Total Roof Area                              | 6685.98 sgft                       |  |
| Green Roof Area                              | 3216.28 sqft                       |  |
| Percentage                                   | 48.1%                              |  |
| Rest of Roof                                 | Dark (0.15 albedo) Concrete Pavers |  |
| Growing Media Depth                          | 8 inches                           |  |
| Leaf Area Index                              | 2                                  |  |
| Roof Irrigated?                              | Yes                                |  |

| Table 15 Annual Energy Savings Compared to Dark Roof |            |  |  |  |  |
|------------------------------------------------------|------------|--|--|--|--|
| Electrical Savings                                   | 1213.7 kWh |  |  |  |  |
| Total Cost Savings                                   | \$181.18   |  |  |  |  |

| Table 16 Average Sensible Heat Flux to the Environment |       |       |  |  |  |  |
|--------------------------------------------------------|-------|-------|--|--|--|--|
| DARK ROOF 48% GREEN ROOF                               |       |       |  |  |  |  |
| Summer Average [W/m2]                                  | 51.1  | 37.4  |  |  |  |  |
| Summer Daily Peak Average [W/m2]                       | 297.4 | 190.3 |  |  |  |  |

- (multiple reflections, shading)
- effect of canopy on sensible heat exchange among the ambient air, leaf, and soil surfaces
- thermal and moisture transport in the growing media with moisture inputs from precipitation (and irrigation if desired) evaporation from the soil surface and transpiration from the vegetation canopy



### PROPOSED



## green roof calculator

## borehole sizing computer program

- <u>Green Roof Energy Calculator</u> allows engineers to compare the annual energy performance of a building of a white roof and dark roof with a vegetative green roof. This physically based energy balance was developed by researchers at Portland State
  - University and the University of Toronto.
- long and short wave radiation exchange within the canopy

The growing media characteristics for were set as follows: thermal conductivity 0.35 W/mK; density 1100 kg/m3; specific heat 1200 J/kgK; saturation volumetric moisture 0.3; residual volumetric moisture 0.01; initial volumetric moisture 0.1.



### GSHP @ 100% Load | Cooling Tower @ 0% Load

| Drill Depth | Total<br>Length | #<br>Boreholes | Depth<br>Borehole | Days  | Drilling<br>\$ | Piping<br>\$ | Grouting<br>\$ | Labor<br>\$ | Cooling<br>Tower \$ | Total<br>\$ | Area<br>[sqft] |
|-------------|-----------------|----------------|-------------------|-------|----------------|--------------|----------------|-------------|---------------------|-------------|----------------|
|             | 6885            | 14             | 500               | 29.47 | 71224          | 9986         | 1721           | 33004       | 0.00                | 115935      | 3270           |
|             | 6885            | 14             | 480               | 29.55 | 71418          | 9990.42      | 1721           | 33094       | 0.00                | 116223      | 3407           |
|             | 6885            | 15             | 460               | 29.64 | 71629          | 9995.22      | 1721           | 33192       | 0.00                | 116537      | 3555           |
| 25          | 6885            | 16             | 440               | 29.73 | 71859          | 10000.5      | 1721           | 33298       | 0.00                | 116879      | 3716           |
| × ع         | 6885            | 16             | 420               | 29.84 | 72111          | 10006.2      | 1721           | 33415       | 0.00                | 117254      | 3893           |
| Δ           | 6885            | 17             | 400               | 29.95 | 72389          | 10012.5      | 1721           | 33544       | 0.00                | 117666      | 4088           |
|             | 6885            | 18             | 380               | 30.08 | 72695          | 10019.5      | 1721           | 33686       | 0.00                | 118122      | 4303           |
|             | 6885            | 19             | 360               | 30.22 | 73036          | 10027.2      | 1721           | 33844       | 0.00                | 118628      | 4542           |
|             | 6885            | 20             | 340               | 30.38 | 73416          | 10035.9      | 1721           | 34020       | 0.00                | 119194      | 4809           |
| 5           | 6885            | 22             | 320               | 23.69 | 50100          | 9668.11      | 1721           | 26530       | 0.00                | 88020       | 5110           |
| 32          | 6885            | 23             | 300               | 23.89 | 50525          | 9679.15      | 1721           | 26755       | 0.00                | 88680       | 5451           |
| D×          | 6885            | 25             | 280               | 24.12 | 51010          | 9691.77      | 1721           | 27012       | 0.00                | 89435       | 5840           |
| 5 <         | 6885            | 26             | 260               | 24.38 | 51570          | 9706.34      | 1721           | 27309       | 0.00                | 90307       | 6289           |
| 22          | 6885            | 29             | 240               | 24.69 | 52223          | 9723.33      | 1721           | 27655       | 0.00                | 91323       | 6813           |
|             | 6885            | 31             | 220               | 18.15 | 31529          | 9363.6       | 1721           | 20330       | 0.00                | 62943       | 7433           |
| 25          | 6885            | 34             | 200               | 18.59 | 32290          | 9387.7       | 1721           | 20820       | 0.00                | 64219       | 8176           |
| < 2         | 6885            | 38             | 180               | 19.13 | 33220          | 9417.15      | 1721           | 21420       | 0.00                | 65779       | 9084           |
| Δ           | 6885            | 43             | 160               | 19.79 | 34383          | 9453.97      | 1721           | 22170       | 0.00                | 67728       | 10220          |
|             | 6885            | 49             | 140               | 20.66 | 35878          | 9501.3       | 1721           | 23134       | 0.00                | 70234       | 11680          |

S DEPTH 1

| Drill Depth | Total<br>Length | #<br>Boreholes | Depth<br>Borehole | Days  | Drilling<br>\$ | Piping<br>\$ | Grouting<br>\$ | Labor<br>\$ | Cooling<br>Tower \$ | Total<br>\$ | Area<br>[sqft] |
|-------------|-----------------|----------------|-------------------|-------|----------------|--------------|----------------|-------------|---------------------|-------------|----------------|
|             | 4055            | 8              | 500               | 17.36 | 41948          | 5881.37      | 1014           | 19438       | 1561.71             | 69843       | 1926           |
|             | 4055            | 8              | 480               | 17.40 | 42062          | 5883.97      | 1014           | 19491       | 1561.71             | 70013       | 2006           |
|             | 4055            | 9              | 460               | 17.45 | 42187          | 5886.8       | 1014           | 19549       | 1561.71             | 70198       | 2094           |
| 25          | 4055            | 9              | 440               | 17.51 | 42322          | 5889.89      | 1014           | 19611       | 1561.71             | 70399       | 2189           |
| ~           | 4055            | 10             | 420               | 17.57 | 42471          | 5893.27      | 1014           | 19680       | 1561.71             | 70620       | 2293           |
|             | 4055            | 10             | 400               | 17.64 | 42634          | 5896.98      | 1014           | 19756       | 1561.71             | 70862       | 2408           |
|             | 4055            | 11             | 380               | 17.71 | 42815          | 5901.09      | 1014           | 19840       | 1561.71             | 71131       | 2534           |
|             | 4055            | 11             | 360               | 17.80 | 43015          | 5905.66      | 1014           | 19933       | 1561.71             | 71429       | 2675           |
|             | 4055            | 12             | 340               | 17.89 | 43239          | 5910.76      | 1014           | 20036       | 1561.71             | 71762       | 2833           |
| 5           | 4055            | 13             | 320               | 13.95 | 29507          | 5694.14      | 1014           | 15625       | 1561.71             | 53402       | 3010           |
| 32          | 4055            | 14             | 300               | 14.07 | 29757          | 5700.65      | 1014           | 15758       | 1561.71             | 53791       | 3210           |
| Ď           | 4055            | 14             | 280               | 14.20 | 30043          | 5708.08      | 1014           | 15909       | 1561.71             | 54236       | 3440           |
| 5 V         | 4055            | 16             | 260               | 14.36 | 30373          | 5716.66      | 1014           | 16084       | 1561.71             | 54749       | 3704           |
| 22          | 4055            | 17             | 240               | 14.54 | 30758          | 5726.67      | 1014           | 16288       | 1561.71             | 55347       | 4013           |
|             | 4055            | 18             | 220               | 10.69 | 18569          | 5514.8       | 1014           | 11973       | 1561.71             | 38633       | 4378           |
| 25          | 4055            | 20             | 200               | 10.95 | 19018          | 5528.99      | 1014           | 12262       | 1561.71             | 39384       | 4815           |
| 2<br>2      | 4055            | 23             | 180               | 11.26 | 19565          | 5546.34      | 1014           | 12616       | 1561.71             | 40303       | 5350           |
|             | 4055            | 25             | 160               | 11.66 | 20250          | 5568.02      | 1014           | 13057       | 1561.71             | 41451       | 6019           |
|             | 4055            | 29             | 140               | 12.17 | 21131          | 5595.9       | 1014           | 13625       | 1561.71             | 42927       | 6879           |

### PROJECT

### EXISTING

PROPOSED

## borehole optimization

GSHP @ 80% Load | Cooling Tower @ 20% Load [10 tons]

### GSHP @ 70% Load | Cooling Tower @ 30% Load [15 tons]

| Drill Depth | Total<br>Length | #<br>Boreholes | Depth<br>Borehole | Days  | Drilling<br>\$ | Piping<br>\$ | Grouting<br>\$ | Labor<br>\$ | Cooling<br>Tower \$ | Total<br>\$ | Area<br>[sqft] |
|-------------|-----------------|----------------|-------------------|-------|----------------|--------------|----------------|-------------|---------------------|-------------|----------------|
|             | 2919            | 6              | 500               | 12.49 | 30196          | 4233.72      | 730            | 13993       | 1,855.71            | 51008       | 1387           |
|             | 2919            | 6              | 480               | 12.53 | 30279          | 4235.59      | 730            | 14031       | 1,855.71            | 51130       | 1444           |
|             | 2919            | 6              | 460               | 12.56 | 30368          | 4237.63      | 730            | 14072       | 1,855.71            | 51263       | 1507           |
| 25          | 2919            | 7              | 440               | 12.60 | 30466          | 4239.85      | 730            | 14117       | 1,855.71            | 51408       | 1576           |
| С<br>~      | 2919            | 7              | 420               | 12.65 | 30573          | 4242.28      | 730            | 14167       | 1,855.71            | 51567       | 1651           |
|             | 2919            | 7              | 400               | 12.70 | 30690          | 4244.96      | 730            | 14221       | 1,855.71            | 51742       | 1733           |
|             | 2919            | 8              | 380               | 12.75 | 30820          | 4247.91      | 730            | 14282       | 1,855.71            | 51935       | 1824           |
|             | 2919            | 8              | 360               | 12.81 | 30965          | 4251.2       | 730            | 14349       | 1,855.71            | 52150       | 1926           |
|             | 2919            | 9              | 340               | 12.88 | 31126          | 4254.87      | 730            | 14423       | 1,855.71            | 52390       | 2039           |
| 5           | 2919            | 9              | 320               | 10.04 | 21241          | 4098.94      | 730            | 11248       | 1,855.71            | 39173       | 2166           |
| 32          | 2919            | 10             | 300               | 10.13 | 21421          | 4103.62      | 730            | 11343       | 1,855.71            | 39453       | 2311           |
| Ď           | 2919            | 10             | 280               | 10.23 | 21626          | 4108.97      | 730            | 11452       | 1,855.71            | 39773       | 2476           |
| 5 <         | 2919            | 11             | 260               | 10.34 | 21864          | 4115.15      | 730            | 11578       | 1,855.71            | 40143       | 2666           |
| 22          | 2919            | 12             | 240               | 10.47 | 22141          | 4122.35      | 730            | 11725       | 1,855.71            | 40573       | 2889           |
|             | 2919            | 13             | 220               | 7.70  | 13367          | 3969.84      | 730            | 8619        | 1,855.71            | 28541       | 3151           |
| 25          | 2919            | 15             | 200               | 7.88  | 13690          | 3980.06      | 730            | 8827        | 1,855.71            | 29082       | 3466           |
| < 2         | 2919            | 16             | 180               | 8.11  | 14084          | 3992.54      | 730            | 9081        | 1,855.71            | 29744       | 3851           |
|             | 2919            | 18             | 160               | 8.39  | 14577          | 4008.15      | 730            | 9399        | 1,855.71            | 30570       | 4333           |
|             | 2919            | 21             | 140               | 8.76  | 15211          | 4028.22      | 730            | 9808        | 1,855.71            | 31632       | 4952           |

### S DEPTH 2

### A BREADTH

### ENERGY

| Table 2 Heating, | , Cooling, Ventilating Factors Contributing to Building Load                                                                                                                                                                                                                                 |                                   |                                                       |           |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-------------------------------------------------------|-----------|
| Weather          | <ul> <li>Design Outdoor Conditions</li> <li>Dry Bulb Temp: 84 F (summer), 9 F (winter)</li> <li>Wet Bulb Temp: 73 F (summer)</li> </ul> Desired Indoor Conditions <ul> <li>Heating &amp; Cooling Setpoint: 75 F</li> <li>Relative Humidity: 50%</li> </ul>                                   | Pow<br>Den<br>Ligh<br>Elec<br>Mec | ver Li<br>nsities fl<br>nting,<br>trical,<br>chanical | igh<br>uo |
| Occupancy        | <ul> <li>367 persons [ 1st: 140, 2nd: 112, 3rd: 115 ]</li> <li>Atrium: 200 sqft/person</li> <li>Break Room: 16 people</li> <li>Classroom: 31 people</li> <li>Conference: 10 people</li> <li>Lobby: 200 sqft/person</li> <li>Office: 20 people</li> <li>Reception: 143 sqft/person</li> </ul> | Env<br>Con                        | elope T<br>struction                                  | he        |
| Schedules        | Office (Weekdays Year-Round)<br>• 6am-8am: 50% load<br>• 8am-5pm: 100% load<br>• 5pm-7pm: 50% load                                                                                                                                                                                           |                                   |                                                       |           |



PROPOSED



## loads & schedule

hts for the open office areas are high performance, energy efficient T-5 prescents or LEDs.

- Classrooms: 1.4 W/sqft, 2 workstations
- Conference: 1.3 W/sqft, 1 workstation
- Mechanical: 20 W/sqft
- Open Office: 1.1 W/sqft, 20 workstations (based upon the number of chairs from design documents)
- Reception: 1.3 W/sqft, 1 workstation

### e facade is a combination of:

- Salvage barn siding
- Motorized upper glazing
- Metal light shelf
- Operable windows: High performance, low-e (low-emissivity) windows provide solar and thermal control and energy efficiency, while admitting maximum daylight.



Figure 4 Facade of CSL

- Glass Fiber Reinforced Concrete Precast Panels
- Backup of exterior studs
- High performance wall and roof insulation reduce winter heat losses and summer heat gains

| Table 11 Pumps / Equipment / Stand-alone Base Utilities Demands & Schedules |                    |                           |  |  |  |  |
|-----------------------------------------------------------------------------|--------------------|---------------------------|--|--|--|--|
| TYPE                                                                        | HOURLY DEMAND [kW] | SCHEDULE                  |  |  |  |  |
| Elevator Fan                                                                | 0.0373             | Office Schedule (Table 5) |  |  |  |  |
| Parking Lot Lights                                                          | 2.973              | 6pm – 7am: 100%           |  |  |  |  |
| Elevator                                                                    | 18                 | Office Schedule (Table 5) |  |  |  |  |
| Wetland Pumps (2)                                                           | 0.2487             | 1 <u>hr</u> /day          |  |  |  |  |
| Sand Filter Pump                                                            | 0.373              | 1 <u>hr</u> /day          |  |  |  |  |
| Lagoon Pump                                                                 | 1.492              | April-October: 100%       |  |  |  |  |
| <u>Stormwater</u> Pump                                                      | 0.9325             | 1 <u>hr</u> /day          |  |  |  |  |

### S DEPTH 2

### BREADTH

### ENERGY



